Baeldung Pro – NPI EA (cat = Baeldung)
announcement - icon

Baeldung Pro comes with both absolutely No-Ads as well as finally with Dark Mode, for a clean learning experience:

>> Explore a clean Baeldung

Once the early-adopter seats are all used, the price will go up and stay at $33/year.

Partner – Microsoft – NPI EA (cat = Baeldung)
announcement - icon

Azure Container Apps is a fully managed serverless container service that enables you to build and deploy modern, cloud-native Java applications and microservices at scale. It offers a simplified developer experience while providing the flexibility and portability of containers.

Of course, Azure Container Apps has really solid support for our ecosystem, from a number of build options, managed Java components, native metrics, dynamic logger, and quite a bit more.

To learn more about Java features on Azure Container Apps, visit the documentation page.

You can also ask questions and leave feedback on the Azure Container Apps GitHub page.

Partner – Microsoft – NPI EA (cat= Spring Boot)
announcement - icon

Azure Container Apps is a fully managed serverless container service that enables you to build and deploy modern, cloud-native Java applications and microservices at scale. It offers a simplified developer experience while providing the flexibility and portability of containers.

Of course, Azure Container Apps has really solid support for our ecosystem, from a number of build options, managed Java components, native metrics, dynamic logger, and quite a bit more.

To learn more about Java features on Azure Container Apps, you can get started over on the documentation page.

And, you can also ask questions and leave feedback on the Azure Container Apps GitHub page.

Partner – Orkes – NPI EA (cat=Spring)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

Partner – Orkes – NPI EA (tag=Microservices)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

eBook – Guide Spring Cloud – NPI EA (cat=Spring Cloud)
announcement - icon

Let's get started with a Microservice Architecture with Spring Cloud:

>> Join Pro and download the eBook

eBook – Mockito – NPI EA (tag = Mockito)
announcement - icon

Mocking is an essential part of unit testing, and the Mockito library makes it easy to write clean and intuitive unit tests for your Java code.

Get started with mocking and improve your application tests using our Mockito guide:

Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Reactive – NPI EA (cat=Reactive)
announcement - icon

Spring 5 added support for reactive programming with the Spring WebFlux module, which has been improved upon ever since. Get started with the Reactor project basics and reactive programming in Spring Boot:

>> Join Pro and download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Jackson – NPI EA (cat=Jackson)
announcement - icon

Do JSON right with Jackson

Download the E-book

eBook – HTTP Client – NPI EA (cat=Http Client-Side)
announcement - icon

Get the most out of the Apache HTTP Client

Download the E-book

eBook – Maven – NPI EA (cat = Maven)
announcement - icon

Get Started with Apache Maven:

Download the E-book

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

eBook – RwS – NPI EA (cat=Spring MVC)
announcement - icon

Building a REST API with Spring?

Download the E-book

Course – LS – NPI EA (cat=Jackson)
announcement - icon

Get started with Spring and Spring Boot, through the Learn Spring course:

>> LEARN SPRING
Course – RWSB – NPI EA (cat=REST)
announcement - icon

Explore Spring Boot 3 and Spring 6 in-depth through building a full REST API with the framework:

>> The New “REST With Spring Boot”

Course – LSS – NPI EA (cat=Spring Security)
announcement - icon

Yes, Spring Security can be complex, from the more advanced functionality within the Core to the deep OAuth support in the framework.

I built the security material as two full courses - Core and OAuth, to get practical with these more complex scenarios. We explore when and how to use each feature and code through it on the backing project.

You can explore the course here:

>> Learn Spring Security

Course – All Access – NPI EA (cat= Spring)
announcement - icon

All Access is finally out, with all of my Spring courses. Learn JUnit is out as well, and Learn Maven is coming fast. And, of course, quite a bit more affordable. Finally.

>> GET THE COURSE
Course – LSD – NPI EA (tag=Spring Data JPA)
announcement - icon

Spring Data JPA is a great way to handle the complexity of JPA with the powerful simplicity of Spring Boot.

Get started with Spring Data JPA through the guided reference course:

>> CHECK OUT THE COURSE

Partner – LambdaTest – NPI EA (cat=Testing)
announcement - icon

End-to-end testing is a very useful method to make sure that your application works as intended. This highlights issues in the overall functionality of the software, that the unit and integration test stages may miss.

Playwright is an easy-to-use, but powerful tool that automates end-to-end testing, and supports all modern browsers and platforms.

When coupled with LambdaTest (an AI-powered cloud-based test execution platform) it can be further scaled to run the Playwright scripts in parallel across 3000+ browser and device combinations:

>> Automated End-to-End Testing With Playwright

Course – Spring Sale 2025 – NPI EA (cat= Baeldung)
announcement - icon

Yes, we're now running our Spring Sale. All Courses are 25% off until 26th May, 2025:

>> EXPLORE ACCESS NOW

Course – Spring Sale 2025 – NPI (cat=Baeldung)
announcement - icon

Yes, we're now running our Spring Sale. All Courses are 25% off until 26th May, 2025:

>> EXPLORE ACCESS NOW

1. Overview

In this article, we’ll be looking at the TransferQueue construct from the standard java.util.concurrent package.

Simply put, this queue allows us to create programs according to the producer-consumer pattern, and coordinate messages passing from producers to consumers.

The implementation is actually similar to the BlockingQueuebut gives us the new ability to implement a form of backpressure. This means that, when the producer sends a message to the consumer using the transfer() method, the producer will stay blocked until the message is consumed.

2. One Producer – Zero Consumers

Let’s test a transfer() method from the TransferQueue – the expected behavior is that the producer will be blocked until the consumer receives the message from the queue using a take() method.

To achieve that, we’ll create a program that has one producer but zero consumers. The first call of transfer() from the producer thread will block indefinitely, as we don’t have any consumers to fetch that element from the queue.

Let’s see how the Producer class looks like:

class Producer implements Runnable {
    private TransferQueue<String> transferQueue;
 
    private String name;
 
    private Integer numberOfMessagesToProduce;
 
    public AtomicInteger numberOfProducedMessages
      = new AtomicInteger();

    @Override
    public void run() {
        for (int i = 0; i < numberOfMessagesToProduce; i++) {
            try {
                boolean added 
                  = transferQueue.tryTransfer("A" + i, 4000, TimeUnit.MILLISECONDS);
                if(added){
                    numberOfProducedMessages.incrementAndGet();
                }
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
    // standard constructors
}

We are passing an instance of the TransferQueue to the constructor together with a name that we want to give our producer and the number of elements that should be transferred to the queue.

Note that we are using the tryTransfer() method, with a given timeout. We are waiting four seconds, and if a producer is not able to transfer the message within the given timeout, it returns false and moves on to the next message. The producer has a numberOfProducedMessages variable to keep track of how many messages were produced.

Next, let’s look at the Consumer class:

class Consumer implements Runnable {
 
    private TransferQueue<String> transferQueue;
 
    private String name;
 
    private int numberOfMessagesToConsume;
 
    public AtomicInteger numberOfConsumedMessages
     = new AtomicInteger();

    @Override
    public void run() {
        for (int i = 0; i < numberOfMessagesToConsume; i++) {
            try {
                String element = transferQueue.take();
                longProcessing(element);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }

    private void longProcessing(String element)
      throws InterruptedException {
        numberOfConsumedMessages.incrementAndGet();
        Thread.sleep(500);
    }
    
    // standard constructors
}

It is similar to the producer, but we are receiving elements from the queue by using the take() method. We are also simulating some long running action by using the longProcessing() method in which we are incrementing the numberOfConsumedMessages variable that is a counter of the received messages.

Now, let’s start our program with only one producer:

@Test
public void whenUseOneProducerAndNoConsumers_thenShouldFailWithTimeout() 
  throws InterruptedException {
    // given
    TransferQueue<String> transferQueue = new LinkedTransferQueue<>();
    ExecutorService exService = Executors.newFixedThreadPool(2);
    Producer producer = new Producer(transferQueue, "1", 3);

    // when
    exService.execute(producer);

    // then
    exService.awaitTermination(5000, TimeUnit.MILLISECONDS);
    exService.shutdown();

    assertEquals(producer.numberOfProducedMessages.intValue(), 0);
}

We want to send three elements to the queue, but the producer is blocked on the first element, and there is no consumer to fetch that element from the queue. We are using the tryTransfer() method which will block until the message is consumed or the timeout is reached. After the timeout, it will return false to indicate the transfer has failed, and it will try to transfer the next one. This is the output from the previous example:

Producer: 1 is waiting to transfer...
can not add an element due to the timeout
Producer: 1 is waiting to transfer...

3. One Producer – One Consumer

Let’s test a situation when there are one producer and one consumer:

@Test
public void whenUseOneConsumerAndOneProducer_thenShouldProcessAllMessages() 
  throws InterruptedException {
    // given
    TransferQueue<String> transferQueue = new LinkedTransferQueue<>();
    ExecutorService exService = Executors.newFixedThreadPool(2);
    Producer producer = new Producer(transferQueue, "1", 3);
    Consumer consumer = new Consumer(transferQueue, "1", 3);

    // when
    exService.execute(producer);
    exService.execute(consumer);

    // then
    exService.awaitTermination(5000, TimeUnit.MILLISECONDS);
    exService.shutdown();

    assertEquals(producer.numberOfProducedMessages.intValue(), 3);
    assertEquals(consumer.numberOfConsumedMessages.intValue(), 3);
}

The TransferQueue is used as an exchange point, and until the consumer consumes an element from the queue, the producer cannot proceed with adding another element to it. Let’s look at the program output:

Producer: 1 is waiting to transfer...
Consumer: 1 is waiting to take element...
Producer: 1 transferred element: A0
Producer: 1 is waiting to transfer...
Consumer: 1 received element: A0
Consumer: 1 is waiting to take element...
Producer: 1 transferred element: A1
Producer: 1 is waiting to transfer...
Consumer: 1 received element: A1
Consumer: 1 is waiting to take element...
Producer: 1 transferred element: A2
Consumer: 1 received element: A2

We see that producing and consuming elements from the queue is sequential because of the specification of TransferQueue.

4. Many Producers – Many Consumers

In the last example we will consider having multiple consumers and multiple producers:

@Test
public void whenMultipleConsumersAndProducers_thenProcessAllMessages() 
  throws InterruptedException {
    // given
    TransferQueue<String> transferQueue = new LinkedTransferQueue<>();
    ExecutorService exService = Executors.newFixedThreadPool(3);
    Producer producer1 = new Producer(transferQueue, "1", 3);
    Producer producer2 = new Producer(transferQueue, "2", 3);
    Consumer consumer1 = new Consumer(transferQueue, "1", 3);
    Consumer consumer2 = new Consumer(transferQueue, "2", 3);

    // when
    exService.execute(producer1);
    exService.execute(producer2);
    exService.execute(consumer1);
    exService.execute(consumer2);

    // then
    exService.awaitTermination(10_000, TimeUnit.MILLISECONDS);
    exService.shutdown();

    assertEquals(producer1.numberOfProducedMessages.intValue(), 3);
    assertEquals(producer2.numberOfProducedMessages.intValue(), 3);
}

In this example, we have two consumers and two producers. When the program starts, we see that both producers can produce one element and after that, they will block until one of the consumers takes that element from the queue:

Producer: 1 is waiting to transfer...
Consumer: 1 is waiting to take element...
Producer: 2 is waiting to transfer...
Producer: 1 transferred element: A0
Producer: 1 is waiting to transfer...
Consumer: 1 received element: A0
Consumer: 1 is waiting to take element...
Producer: 2 transferred element: A0
Producer: 2 is waiting to transfer...
Consumer: 1 received element: A0
Consumer: 1 is waiting to take element...
Producer: 1 transferred element: A1
Producer: 1 is waiting to transfer...
Consumer: 1 received element: A1
Consumer: 2 is waiting to take element...
Producer: 2 transferred element: A1
Producer: 2 is waiting to transfer...
Consumer: 2 received element: A1
Consumer: 2 is waiting to take element...
Producer: 1 transferred element: A2
Consumer: 2 received element: A2
Consumer: 2 is waiting to take element...
Producer: 2 transferred element: A2
Consumer: 2 received element: A2

5. Conclusion

In this article, we were looking at the TransferQueue construct from the java.util.concurrent package.

We saw how to implement the producer-consumer program using that construct. We used a transfer() method to create a form of backpressure, where a producer can not publish another element until the consumer retrieves an element from the queue.

The TransferQueue can be very useful when we do not want an over-producing producer that will flood the queue with messages, resulting in the OutOfMemory errors. In such design, the consumer will be dictating the speed at which the producer will produce messages.

The code backing this article is available on GitHub. Once you're logged in as a Baeldung Pro Member, start learning and coding on the project.
Baeldung Pro – NPI EA (cat = Baeldung)
announcement - icon

Baeldung Pro comes with both absolutely No-Ads as well as finally with Dark Mode, for a clean learning experience:

>> Explore a clean Baeldung

Once the early-adopter seats are all used, the price will go up and stay at $33/year.

Partner – Microsoft – NPI EA (cat = Spring Boot)
announcement - icon

Azure Container Apps is a fully managed serverless container service that enables you to build and deploy modern, cloud-native Java applications and microservices at scale. It offers a simplified developer experience while providing the flexibility and portability of containers.

Of course, Azure Container Apps has really solid support for our ecosystem, from a number of build options, managed Java components, native metrics, dynamic logger, and quite a bit more.

To learn more about Java features on Azure Container Apps, visit the documentation page.

You can also ask questions and leave feedback on the Azure Container Apps GitHub page.

Partner – Orkes – NPI EA (cat = Spring)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

Partner – Orkes – NPI EA (tag = Microservices)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

eBook – HTTP Client – NPI EA (cat=HTTP Client-Side)
announcement - icon

The Apache HTTP Client is a very robust library, suitable for both simple and advanced use cases when testing HTTP endpoints. Check out our guide covering basic request and response handling, as well as security, cookies, timeouts, and more:

>> Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

Course – LS – NPI EA (cat=REST)

announcement - icon

Get started with Spring Boot and with core Spring, through the Learn Spring course:

>> CHECK OUT THE COURSE

Course – Spring Sale 2025 – NPI EA (cat= Baeldung)
announcement - icon

Yes, we're now running our Spring Sale. All Courses are 25% off until 26th May, 2025:

>> EXPLORE ACCESS NOW

Course – Spring Sale 2025 – NPI (All)
announcement - icon

Yes, we're now running our Spring Sale. All Courses are 25% off until 26th May, 2025:

>> EXPLORE ACCESS NOW

eBook Jackson – NPI EA – 3 (cat = Jackson)